EE 508 Lecture 6

Degrees of Freedom The Approximation Problem

Desgin Strategy

Theorem: A circuit with transfer function T(s) can be obtained from a circuit with normalized transfer function $T_{n}(s_{n})$ by denormalizing all frequency dependent components.

> $C \longrightarrow C/\omega_{\rm o}$ $\mathsf{L} \longrightarrow \mathsf{L}/\omega_{\mathrm{o}}$

Frequency normalization/scaling

The frequency scaled circuit can be obtained from the normalized circuit simply by scaling the frequency dependent impedances (up or down) by the scaling factor

Component denormalization by factor of ω_0

Component values of energy storage elements are scaled down by a factor of $ω$ **⁰**

Impedance Scaling

Theorem: If all impedances in a circuit are scaled by a constant θ, then

- a) All dimensionless transfer functions are unchanged
- b) All transresistance transfer functions are scaled by θ
- c) All transconductance transfer functions are scaled by θ^{-1}

Impedance Scaling

Impedance scaling of a circuit is achieved by multiplying ALL impedances in the circuit by a constant

 $A \longrightarrow A$ for dimensionless gain θA for transresistance gain A/θ for transconductance gain

Example: Design a V-V passive 3rd-order Lowpass Butterworth filter with a band-edge of 1K Rad/Sec and equal source and load terminations.

Is this solution practical?

Some component values are too big and some are too small !

 $R \rightarrow \theta R$

Impedance scale by θ=1000

$$
T(s)=K\frac{10^9}{s^3+2\cdot 10^3s^2+2\cdot 10^6s+10^9}
$$

Typical approach to lowpass filter design **Review from Last Time**

- 1. Obtain normalized approximating function
- 2. Synthesize circuit to realize normalized approximating function
- 3. Denormalize circuit obtained in step 2
- 4. Impedance scale to obtain acceptable component values

Degrees of Freedom

The number of degrees of freedom in the design of a system is the difference between the total number of design variables and the number of constraints for the design.

Important to recognize the number of degrees of freedom available in a design and the number of constraints.

- If the number of design variables is less than the number of constraints in a specific system, the system is over-constrained
- Even if the number of degrees of freedom is greater than or equal to 1, a solution may not exist

Degrees of Freedom?

Can't tell since there is no design yet

Number of Restrictions (Constraints) ?

- 2nd Order
- Lowpass
- Butterworth
- 3dB passband attenuation
- dc gain of 5
- 3dB bandedge of 4 KHz
- No inductors

7 Restrictions

Note: We have not discussed the Butterworth approximation yet so some details here will be based upon concepts that will be developed later

$$
T_{\text{BWh-3dB}} = \left(\frac{1}{s^2 + \sqrt{2}s + 1}\right) \cdot 5 \longrightarrow \omega_0 = 1
$$

 $Q = \frac{1}{\sqrt{2}} = 0.707$

 $(2nd order, lowpass, BW, 3dB, gain of 5)$

Circuit has 5 Degrees of Freedom!

How many degrees of freedom remain? 5-3=2

Normalizing by the factor ω_{0} , we obtain

$$
T(s_n) = \frac{1}{s^2 + s\left(\frac{R}{R_0}\right) + 1}
$$

Lets now use up the two degrees of freedom in the circuit:

Setting $R=R_3=1$ obtain the following circuit

Setting $R=R_3=1$ obtain the following circuit

The two constraints become

$$
\omega_0 = \frac{1}{RC} = \frac{1}{C} \qquad \qquad Q = \frac{R_Q}{R} = R_Q
$$

This leaves 2 unknowns, R_{Ω} and C and two constraints (i.e. no remaining degrees of freedom)

$$
T(s_n) = \frac{1}{s^2 + s(\frac{1}{Q}) + 1}
$$
 $\omega_{0n} = 1$ $Q_N = \frac{1}{\sqrt{2}}$

To satisfy the 2 constraints, must now set $R_{\text{Q}} = Q$ $C = 1$

Denormalized circuit with bandedge of 4 KHz

This has the right transfer function (but unity gain)

Can now do impedance scaling to get more practical component values

A good impedance scaling factor may be θ=1000

$$
R \longrightarrow 1K
$$

$$
C \longrightarrow 39.8nF
$$

Denormalized circuit with bandedge of 4 KHz

This has the right transfer function (but unity gain)

To finish the design, preceed or follow this circuit with an amplifier with a gain of 5 to meet the dc gain requirements

Filter Concepts and Terminology

- Frequency scaling
- Frequency Normalization
- Impedance scaling
- **Transformations**
	- $-$ LP to BP
	- LP to HP
	- $-$ LP to BR

It can be shown the standard HP, BP, and BR approximations can be obtained by a frequency transformation of a standard LP approximating function

Will address the LP approximation first, and then provide details about the frequency transformations

Filter Design Process

Filter

The Approximation Problem

The goal in the approximation problem is simple, just want a function $T_{\sf A}({\sf s})$ or ${\sf H}_{\sf A}({\sf z})$ that meets the filter requirements.

Will focus primarily on approximations of the standard normalized lowpass function

- Frequency scaling will be used to obtain other LP band edges
- Frequency transformations will be used to obtain HP, BP, and BR responses

The Approximation Problem

$$
T_{A}(s)=?
$$

 $\mathsf{T}_\mathsf{A}(\mathsf{s})$ is a rational fraction in s

$$
T(s) = \frac{\sum_{i=0}^{m} a_i s^i}{\sum_{i=0}^{n} b_i s^i}
$$

Rational fractions in s have no discontinuities in either magnitude or phase response

No natural metrics for $T_{\sf A}({\sf s})$ that relate to magnitude and phase characteristics (difficult to meaningfully compare $T_{A1}(s)$ and $T_{A2}(s)$)

The Approximation Problem

Approach we will follow:

- Magnitude Squared Approximating Functions $\mathsf{H}_{\mathsf{A}} \big(\mathsf{\omega}^2 \big)$.
- Inverse Transform $H_A(\omega^2) \rightarrow T_A(s)$
- Collocation
- Least Squares
- Pade Approximatins
- **Other Analytical Optimization**
- Numerical Optimization
- Canonical Approximations
	- \rightarrow Butterworth (BW)
	- \rightarrow Chebyschev (CC)
	- \rightarrow Elliptic
	- \rightarrow Thompson

$$
T(s) = \frac{\sum_{i=0}^{m} a_i s^i}{\sum_{i=0}^{n} b_i s^i}
$$

$$
T(j\omega) = \frac{\sum_{i=0}^{m} a_i (j\omega)^i}{\sum_{i=0}^{n} b_i (j\omega)^i}
$$

$$
T(j\omega) = \frac{a_{o} + a_{1}(j\omega) + a_{2}(j\omega)^{2} + ... + a_{m}(j\omega)^{m}}{b_{o} + b_{1}(j\omega) + b_{2}(j\omega)^{2} + ... + b_{n}(j\omega)^{n}}
$$

$$
T(j\omega) = \frac{[a_o - a_2\omega^2 + a_4\omega^4 + . .] + j[a_4\omega - a_3\omega^3 + a_5\omega^5 + ...]}{[b_o - b_2\omega^2 + b_4\omega^4 + . .] + j[b_4\omega - b_3\omega^3 + b_5\omega^5 + ...]}
$$

$$
T(j\omega) = \frac{[\sum_{0 \le k \le m} a_k\omega^k] + j[\omega \sum_{0 \le k \le m} a_k\omega^{k-1}]}{[\sum_{0 \le k \le n} b_k\omega^k] + j[\omega \sum_{0 \le k \le n} b_k\omega^{k-1}]} \frac{[D_{0 \le k \le n} b_k\omega^{k-1}]}{[E_1(\omega^2)] + j[\omega E_2(\omega^2)]}
$$

$$
T(j\omega) = \frac{[F_1(\omega^2)] + j[\omega F_2(\omega^2)]}{[F_3(\omega^2)] + j[\omega F_4(\omega^2)]}
$$

where F_1 , F_2 , F_3 and F_4 are even functions of ω

$$
T(s) = \frac{\sum_{i=0}^{m} a_i s^i}{\sum_{i=0}^{n} b_i s^i}
$$

$$
T(j\omega) = \frac{\left[F_1(\omega^2)\right] + j\left[\omega F_2(\omega^2)\right]}{\left[F_3(\omega^2)\right] + j\left[\omega F_4(\omega^2)\right]}
$$

$$
T(j\omega)\big| = \sqrt{\frac{\left[F_1(\omega^2)\right]^2 + \omega^2 \left[F_2(\omega^2)\right]^2}{\left[F_3(\omega^2)\right]^2 + \omega^2 \left[F_4(\omega^2)\right]^2}}
$$

Thus $|T(j\omega)|$ is an even function of ω

It follows that $\left|T(j\omega)\right|^2$ is a rational fraction in ω^2 with real coefficients

Since $|T(j\omega)|^2$ is a real variable, natural metrics exist for comparing approximating functions to $\left| T(\mathsf{j}\omega) \right|^2$

$$
T(s) = \frac{\sum_{i=0}^{m} a_i s^i}{\sum_{i=0}^{n} b_i s^i}
$$

If a desired magnitude response is given, it is common to find a rational fraction in ω² with real coefficients, denoted as $H_A(\omega^2)$, that approximates the desired magnitude squared response and then obtain a function $T_{\sf A}({\sf s})$ that satisfies the relationship $\left|T_{\text{\tiny A}}\left(\text{j}\omega\right)\right|^2$ = H_A $\left(\omega^2\right)$

H_A(ω²) is real so natural metrics exist for obtaining H_A(ω²)

$$
H_A(\omega^2) = \frac{\sum_{i=0}^{2l} c_i \omega^{2i}}{\sum_{i=0}^{2k} d_i \omega^{2i}}
$$

Obtaining T_A(s) from $H_A(\omega^2)$ is termed the inverse mapping problem

But how is T $_{\underline{A}}(s)$ obtained from $H_A(\omega^2)$?

Inverse mapping problem:

$$
T_A(s) \longrightarrow H_A(\omega^2) = |T_A(j\omega)|^2
$$

\n
$$
T_A(s) \longrightarrow H_A(\omega^2)
$$

\nConsider an example:
\n
$$
T_A(s) = s+1
$$

\n
$$
T_A(s) = s-1
$$

\n
$$
T_A(\omega^2) = 1 + \omega^2
$$

Thus, the inverse mapping in this example is not unique !

Inverse mapping problem:

$$
T_A(s)
$$
 \longrightarrow $H_A(\omega^2)$ $H_A(\omega^2) = |T_A(j\omega)|^2$
 $T_A(s)$ \longrightarrow $H_A(\omega^2)$

Some observations:

- If an inverse mapping exists, it is not necessarily unique
- If an inverse mapping exists, then a minimum phase inverse mapping exists and it is unique (within all-pass factors)
- The mapping from $T_{\rm A}$ (s) to $H_{\rm A}(\omega^2)$ increases order by a factor of 2

• Any inverse mapping from $H_A(\omega^2)$ to $T_A(s)$ will reduce order by a factor of 2 (within all-pass factors)

Example:

$$
H_A(\omega^2) = \frac{2\omega^2 + 1}{\omega^4 + 2\omega^2 + 1}
$$
 $T_A(s) = \frac{\sqrt{2}s + 1}{(s+1)(s+1)}$

Example:

$$
H_A(\omega^2) = \frac{\omega^2-1}{\omega^4+2\omega^2+1} \qquad \longrightarrow \qquad \qquad
$$

Inverse mapping does not exist !

It can be shown that many even rational fractions in ω^2 do not have an inverse mapping back to the s-domain !

Often these functions have a magnitude squared response that does a good job of approximating the desired filter magnitude response

If an inverse mapping exists, there are often several inverse mappings that exist

Observation: If z is a zero (pole) of $H_A(\omega^2)$, then $-z$, z^* , and $-z^*$ are also zeros (poles) of $H_A(\omega^2)$

Thus, roots come as quadruples if off of the axis and as pairs if they lay on the axis

Observation: If z is a zero (pole) of $H_A(\omega^2)$, then $-z$, z^* , and $-z^*$ are also zeros (poles) of $H_A(\omega^2)$

Proof:

Consider an even polynomial in ω^2 with real coefficients $P(\omega^2) = \sum_{i=0}^{\infty}$ $\mathsf{P}\!\left(\omega^2\right)\!=\!\sum^m_{i}\!\mathbf{a}_{i}\!\omega^{2i}$

At a root, this polynomial satisfies the expression

$$
P\left(\omega^2\right) = \sum_{i=0}^m a_i \omega^{2i} = 0
$$

i⁼ $=\sum$

Replacing ω with $-\omega$, we obtain

$$
P\left(\left[-\omega\right]^2\right) = \sum_{i=0}^m a_i \left[-\omega\right]^{2i} = \sum_{i=0}^m a_i \left[-1^2\right]^i \left[\omega\right]^{2i} = \sum_{i=0}^m a_i \left[\omega\right]^{2i} = 0 \implies -\omega \text{ is a root of } P\left(\omega^2\right)
$$

Recall $(xy)^* = x^*y^*$, $\left(x^n\right)^* = \left(x^*\right)^n$ and $(x+y)^* = x^*+y^*$

Taking the complex conjugate of $P(\omega^2)$ =0 we obtain

$$
P\left(\omega^2\right)^* = \sum_{i=0}^m \left(a_i \omega^{2i}\right)^* = \sum_{i=0}^m \left(a_j^*\right) \left(\omega^{2i}\right)^* = \sum_{i=0}^m \left(a_j^*\right) \left(\left(\omega^*\right)^{2i}\right) = 0
$$

Since a_i is real for all I, it thus follows that

$$
\sum_{i=0}^{m} (a_i) ((\omega^*)^{2i}) = 0
$$
 $\qquad \qquad \omega^*$ is a root of $P(\omega^2)$

If a desired magnitude response is given, it is common to find a rational fraction in ω² with real coefficients, denoted as $H_A(\omega^2)$, that approximates the desired magnitude squared response and then obtain a function $T_{\rm A}(\text{s})$ that satisfies the relationship $\left|T_{A}\left(j\omega\right)\right|^{2}$ = H_A $\left(\omega^{2}\right)$

Inverse mapping may not exist !

To make this approach practical it is essential that a method be developed for determining if an inverse mapping exists and, if it exists, to determine **an** inverse mapping!

Inverse MappingTheorem: If $H_A(\omega^2)$ is a rational fraction of order 2m/2n with real coefficients with no poles or zeros of odd multiplicity on the real axis, then there exists a real number H_0 such that the function

$$
T_{AM}(s) = \frac{H_0(s-jz_1)(s-jz_2) \cdot ... \cdot (s-jz_m)}{(s-jp_1)(s-jp_2) \cdot ... \cdot (s-jp_n)}
$$

is a minimum phase rational fraction with real coefficients that satisfies the relationship $\left|\mathsf{T}_{_{\mathsf{AM}}} \right(\mathsf{j}\omega)\right| \!=\! \sqrt{\mathsf{H}_{_{\mathsf{A}}}\!\left(\omega^2\right)}$

where $\{z_1, z_2, ... z_m\}$ are the upper half-plane zeros of $\mathsf{H}_{\mathsf{A}}(\omega^2)$ and exactly half of the real axis zeros,

and where where $\{p_1, \, p_2, \, ... p_n\}$ are the upper half-plane poles of $H^A(\omega^2)$ and exactly half of the real axis poles.

$$
H_A(\omega^2) = \frac{H_0^2 \left[(\omega - z_1)(\omega - z_2) \cdot ... \cdot (\omega - z_m) \right] \cdot \left[(\omega + z_1)(\omega + z_2) \cdot ... \cdot (\omega + z_m) \right]}{\left[(\omega - p_1)(\omega - p_2) \cdot ... \cdot (\omega - p_n) \right] \cdot \left[(\omega + p_1)(\omega + p_2) \cdot ... \cdot (\omega + p_n) \right]}
$$

If inverse exists

$$
T_{AM}(s) = \frac{H_0(s - jz_1)(s - jz_2) \cdot ... \cdot (s - jz_m)}{(s - jp_1)(s - jp_2) \cdot ... \cdot (s - jp_n)}
$$

Example:

Roots that appear in $T_{AM}(s)$

Inverse does not exist because zeros are of odd multiplicity on the real axis

Theorem: If $H_A(\omega^2)$ is a rational fraction of order 2m/2n with real coefficients with one or more poles on the real axis that are of odd multiplicity, then there is no inverse mapping to a rational fraction T(s) with real coefficients that satisfies the relationship $|T (j\omega) | = \sqrt{H_A (\omega^2)}$ er 2m/2n with real
axis that are of odd
a rational fraction T(s) with
T $(j\omega)$ = $\sqrt{H_A(\omega^2)}$
der 2m/2n with real
l axis that are of odd
o a rational fraction T(s) with
 $\frac{1}{2}$ (i) = $\frac{1}{2}$ (i) = $\frac{1}{2}$ 2m/2n with real
s that are of odd
rational fraction T(s) with
 $(j\omega)$ = $\sqrt{H_A(\omega^2)}$
r 2m/2n with real
xis that are of odd
a rational fraction T(s) with
T $(j\omega)$ = $\sqrt{H_A(\omega^2)}$

Theorem: If $H_A(\omega^2)$ is a rational fraction of order 2m/2n with real coefficients with one or more zeros on the real axis that are of odd multiplicity, then there is no inverse mapping to a rational fraction T(s) with real coefficients that satisfies the relationship

$$
|T (j\omega)| = \sqrt{H_A (\omega^2)}
$$

Example where inverse mapping does not exist:

$$
H_A(\omega^2) = \frac{H_0^2[(\omega-z_1)(\omega-z_2)\cdot...\cdot(\omega-z_m)] \cdot [(\omega+z_1)(\omega+z_2)\cdot...\cdot(\omega+z_m)]}{[(\omega-p_1)(\omega-p_2)\cdot...\cdot(\omega-p_n)] \cdot [(\omega+p_1)(\omega+p_2)\cdot...\cdot(\omega+p_n)]}
$$

If inverse exists

$$
T_{AM}(s) = \frac{H_0(s-jz_1)(s-jz_2)\cdot...\cdot(s-jz_m)}{(s-jp_1)(s-jp_2)\cdot...\cdot(s-jp_n)}
$$

Observations:

- Coefficients of $T_{AM}(s)$ are real
- $\bullet\,$ If x is a root of $H_A(\omega^2)$, then jx is a root of $T_{AM}(\textbf{s})$
- Multiplying a root by j is equivalent to rotating it by 90 \degree cc in the complex plane
- Roots of T_{AM}(s) are obtained from roots of $H^A(\omega^2)$ by multiplying by j
- Roots of $T_{AM}(s)$ are upper half-plane roots and exactly half of real axis roots all rotated cc by 90°
- If a root of $H_A(\omega^2)$ has odd multiplicity on the real axis, the inverse mapping does not exist
- Other (often many) inverse mappings exist but are not minimum phase (These can be obtained by reflecting any subset of the zeros or poles around the imaginary axis into the RHP)

All pass functions (and factors)

- Must not allow cancellations to take place in $H_A(\omega^2)$ to obtain all-pass $T_A(s)$
- Must keep upper HP poles and lower HP zeros in $H_A(\omega^2)$ to obtain all-pass $T_A(s)$
- All-pass $\mathsf{T}_\mathsf{A}(\mathsf{s})$ is not minimum phase

Stay Safe and Stay Healthy !

End of Lecture 6