
EE 508

Lecture 6

Degrees of Freedom

The Approximation Problem



Desgin Strategy

Theorem:  A circuit with transfer function T(s) can be 

obtained from a circuit with normalized transfer function 

Tn(sn)  by denormalizing all frequency dependent 

components.  
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Review from Last Time



Frequency normalization/scaling
The frequency scaled circuit can be obtained from the normalized circuit simply 

by scaling the frequency dependent impedances (up or down) by the scaling 

factor

Component denormalization by factor of ω0

Component values of energy storage elements are scaled down by a factor of ω0
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Denormalized 
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Review from Last Time



Impedance Scaling

Theorem:  If all impedances in a circuit are scaled by a 

constant θ, then 

a)  All dimensionless transfer functions are unchanged

b)  All transresistance transfer functions are scaled by θ

c)  All transconductance transfer functions are scaled by θ-1

Review from Last Time



Impedance Scaling

Impedance scaling of a circuit is achieved by multiplying 

ALL impedances in the circuit by a constant 
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C/θ

Lθ

R θR

A

θA  for transresistance gain

A    for dimensionless gain

A/θ for transconductance gain

Review from Last Time



Example:   Design a V-V passive 3rd-order Lowpass Butterworth filter with a 

band-edge of 1K Rad/Sec and equal source and load terminations.

Is this solution practical?

Some component values are too big and some are too small !
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Impedance scale by θ=1000
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Component values more practical
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Typical approach to lowpass filter design

1. Obtain normalized approximating function

2. Synthesize circuit to realize normalized approximating function

3. Denormalize circuit obtained in step 2

4. Impedance scale to obtain acceptable component values

Review from Last Time



Degrees of Freedom
The number of degrees of freedom in the design of a 

system is the difference between the total number of 

design variables and the number of constraints for 

the design.

Important to recognize the number of degrees of 

freedom available in a design and the number of 

constraints.

• If the number of design variables is less than the number of 

constraints in a specific system, the system is over-constrained 

• Even if the number of degrees of freedom is greater than or equal to 

1, a solution may not exist

Review from Last Time



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB 

bandedge of 4KHz and no inductors

Degrees of Freedom?

Can’t tell  since there is no design yet

Number of Restrictions (Constraints) ?

• 2nd Order

• Lowpass

• Butterworth

• 3dB passband attenuation

• dc gain of 5

• 3dB bandedge of 4 KHz

• No inductors

7 Restrictions



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB 

bandedge of 4KHz with no inductors.

Note:  We have not discussed the Butterworth approximation yet so some 

details here will be based upon concepts that will be developed later
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Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB band 

edge of 4KHz,no inductors.
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7 design variables and only two constraints (ignoring the gain right now)

Circuit has 5 Degrees of Freedom!



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB band 

edge of 4KHz
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How many degrees of freedom remain? 5-3=2



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB 

bandedge of 4KHz
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Normalizing by the factor ω0, we obtain
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Setting R=R3=1 obtain the following  circuit

Lets now use up the two degrees of freedom in the circuit:



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB 

bandedge of 4KHz
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Setting R=R3=1 obtain the following circuit

The two constraints become

This leaves 2 unknowns, RQ and C and two constraints (i.e. no remaining 

degrees of freedom)



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB 

bandedge of 4KHz

( )n
2

1
T s  = 

1
s +s +1

Q

 
 
 

1

10.707

VOLP

VIN

A Popular Second-Order Lowpass Filter

INT1 INT2

1

1

1

1
1

0nω = 1

Now we can do frequency scaling C

L

C/ωo

L/ωo

C=1 1/(2π●4K) = 39.8uF

To satisfy the 2 constraints, must now set 
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Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB 

bandedge of 4KHz

1

1.707

VOLP

VIN

A Popular Second-Order Lowpass Filter

INT1 INT2

39.8uF

1 1
139.8uF

Denormalized circuit with bandedge of 4 KHz

This has the right transfer function (but unity gain)

Can now do impedance scaling to get more practical component values
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R θR

A good impedance scaling factor may be θ=1000

C 39.8nF

R 1K



Example:  Design a 2nd order lowpass Butterworth filter with 

3dB passband attenuation, a dc gain of 5, and a 3dB 

bandedge of 4KHz

1K

1K707

VOLP

VIN

39.8nF

1K

1K
1K39.8nF

Denormalized circuit with bandedge of 4 KHz

This has the right transfer function (but unity gain)

To finish the design, preceed or follow this circuit with an amplifier 

with a gain of 5 to meet the dc gain requirements



Filter Concepts and Terminology

• Frequency scaling

• Frequency Normalization

• Impedance scaling

• Transformations
– LP to BP

– LP to HP

– LP to BR

It can be  shown the standard HP, BP, and BR approximations can be 

obtained by a frequency transformation of a standard LP approximating 

function

Will address the LP approximation first, and then provide details about the 

frequency transformations



Filter Design 

Process

Establish 

Specifications

- possibly TD(s) or HD(z)

- magnitude and phase

    characteristics or restrictions 

- time domain requirements

Approximation

- obtain acceptable transfer

   functions  TA(s) or HA(z)

- possibly acceptable realizable 

   time-domain   responses 

Synthesis

- build circuit or implement algorithm

   that has response close to TA(s) or 

   HA(z) 

-  actually realize TR(s) or HR(z)

Filter



The Approximation Problem

The goal in the approximation problem is simple, just want 

a function TA(s) or HA(z) that meets the filter requirements.

1

1

ω

( )LPT j

Will focus primarily on approximations of the standard 

normalized lowpass function

• Frequency scaling will be used to obtain other LP band edges

• Frequency transformations will be used to obtain HP, BP, and BR

 responses



The Approximation Problem

1

1

ω

( )LPT j

( )AT s =?

TA(s) is a rational fraction in s

Rational fractions in s have no discontinuities in 

either magnitude or phase response

No natural metrics for TA(s) that relate to 

magnitude and phase characteristics  (difficult to 

meaningfully compare TA1(s) and TA2(s))
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The Approximation Problem

1

1

ω

( )LPT j

• Magnitude Squared Approximating Functions

• Inverse Transform

• Collocation

• Least Squares

• Pade Approximatins

• Other Analytical Optimization

• Numerical Optimization

• Canonical Approximations
→Butterworth (BW)

→Chebyschev (CC)

→Elliptic

→Thompson

Approach we will follow:
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Magnitude Squared Approximating Functions
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where F1, F2, F3 and F4 are even functions of ω



Magnitude Squared Approximating Functions
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Thus             is an even function of ω ( )T jω  

It follows that              is a rational fraction in ω2 with real coefficients ( )
2
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Magnitude Squared Approximating Functions
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If a desired magnitude response is given, it is common to find a rational 

fraction in ω2 with real coefficients, denoted as HA(ω2), that approximates 

the desired magnitude squared response and then obtain a function TA(s) 

that satisfies the relationship ( ) ( )
2 2

A AT jω = H ω

HA(ω2) is real so natural metrics exist for obtaining HA(ω2) 
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Obtaining TA(s) from HA(ω2) is termed the inverse mapping problem 

But how is TA(s) obtained from HA(ω2)  ?   

 



( )AT s ( )2

AH ω

( )2

AH ω( )AT s

( ) ( )
22

A AH ω T jω=

?

Inverse mapping problem:

well 

defined

Consider an example:
( ) 11T s s= +

( ) 212

AH ω ω= +

( ) 11T s s= −

Thus, the inverse mapping in this example is not unique !



( )AT s ( )2

AH ω

( )2

AH ω( )AT s

( ) ( )
22

A AH ω T jω=

?

Inverse mapping problem:

• If an inverse mapping exists, it is not necessarily unique

• If an inverse mapping exists, then a minimum phase inverse mapping 

exists and it is unique (within all-pass factors)

• The mapping from TA(s) to HA(ω2) increases order by a factor of 2

• Any inverse mapping from HA(ω2) to TA(s) will reduce order by a factor of 

2 (within all-pass factors)

Some observations:



Example:

( )
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Example:
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ω -1
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=

Inverse mapping does not exist !

?

It can be shown that many even rational fractions in ω2 do not have an 

inverse mapping back to the s-domain !

Often these functions have a magnitude squared response that does a 

good job of approximating the desired filter magnitude response

If an inverse mapping exists, there are often several inverse mappings that 

exist
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Observation:   If z is a zero (pole) of HA(ω2), then –z, z*, and –z* are also 

zeros (poles) of HA(ω2) 

Thus, roots come as quadruples if off of the axis and as pairs if they lay on the axis
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Observation:   If z is a zero (pole) of HA(ω2), then –z, z*, and –z* are also 

zeros (poles) of HA(ω2) 

Proof:
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Magnitude Squared Approximating Functions

If a desired magnitude response is given, it is common to find a rational 

fraction in ω2 with real coefficients, denoted as HA(ω2), that approximates 

the desired magnitude squared response and then obtain a function TA(s) 

that satisfies the relationship ( ) ( )
2 2

A AT jω = H ω

Inverse mapping may not exist !

To make this approach practical it is essential that a 

method be developed for determining if an inverse 

mapping exists and, if it exists, to determine an 

inverse mapping! 



Inverse MappingTheorem:  If HA(ω2) is a rational fraction  of order 2m/2n  

with real coefficients with no poles or zeros of odd multiplicity on the real 

axis, then there exists a real number H0 such that  the function

is a minimum phase rational fraction with real coefficients that satisfies the 

relationship

where {z1, z2, …zm} are the upper half-plane zeros of HA(ω2) and exactly 

half of the real axis zeros, 

and where where {p1, p2, …pn} are the upper half-plane poles of HA(ω2) 

and exactly half of the real axis poles.
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Example:
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Example:

Inverse does not exist because zeros 

are of odd multiplicity on the real axis

If inverse exists



( )
( )( ) ( )

( )( ) ( )

...

...

0 1 2 m

AM

1 2 n

H s-jz s-jz s-jz
T s

s-jp s-jp s-jp

• •
=

• •

Roots that appear in TAM(s)Roots of HA(ω2)

( )
( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

2

0 1 1 2 m

1 2

2 m2

A

n1 2 n

ω+z ω+z •...• ω+z

ω+p ω+p •.

H ω-z ω-z •...• ω-z •
H ω

ω-p ω-p • ..• ω...• ω-p • +p

  =
  

 

  

Im

Re

Im

Re

Im

Re

Im

Re

Rotate roots by 90o Roots of TAM(s)

If inverse exists



      Theorem:  If HA(ω2) is a rational fraction  of order 2m/2n  with real 

      coefficients with one or more zeros on the real axis  that are of odd 

      multiplicity, then there is no inverse mapping to a rational fraction T(s) with 

      real coefficients that satisfies the relationship

Theorem:  If HA(ω2) is a rational fraction  of order 2m/2n  with real 

coefficients with one or more poles on the real axis  that are of odd 

multiplicity, then there is no inverse mapping to a rational fraction T(s) with 

real coefficients that satisfies the relationship ( ) ( )2

AT jω H ω=

Im
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Example where inverse mapping does not exist:

( ) ( )2

AT jω H ω=

Im

Re



( )
( )( ) ( )

( )( ) ( )

...

...

0 1 2 m

AM

1 2 n

H s-jz s-jz s-jz
T s

s-jp s-jp s-jp

• •
=

• •

( )
( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

2

0 1 1 2 m

1 2

2 m2

A

n1 2 n

ω+z ω+z •...• ω+z

ω+p ω+p •.

H ω-z ω-z •...• ω-z •
H ω

ω-p ω-p • ..• ω...• ω-p • +p

  =
  

 

  

• Coefficients of TAM(s) are real

• If x is a root of HA(ω2), then jx is a root of TAM(s)

 

• Multiplying a root by j is equivalent to rotating it by 90o cc in the complex plane

• Roots of TAM(s) are obtained from roots of HA(ω2) by multiplying by j

• Roots of TAM(s) are upper half-plane roots and exactly half of real axis roots all 

rotated cc by 90o

• If a root of HA(ω2) has odd multiplicity on the real axis, the inverse mapping 

does not exist

• Other (often many) inverse mappings exist but are not minimum phase 
(These can be obtained by reflecting any subset of the zeros or poles around the imaginary axis into the RHP)

Observations:

If inverse exists
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If inverse exists
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All pass functions (and factors)

• Must not allow cancellations to take place in HA(ω2) to obtain all-pass TA(s)

• Must keep upper HP poles and lower HP zeros in HA(ω2) to obtain all-pass TA(s)

• All-pass TA(s) is not minimum phase

All pass TA(s)

Pole-zero cancellation

TA(s)=1



Stay Safe and Stay Healthy !



End of Lecture 6
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